Julio Romero Figueroa
Ingeniero Civil Químico (USACH) y Doctor en Ingeniería de Procesos (U. de Montpellier), Profesor de la Universidad de Santiago de Chile desde el año 2003, desempeñando labores como académico y Director del Laboratorio de Procesos de Separación por Membranas (LabProSeM). Ha sido Director del Programa de Magíster en Tecnología de Alimentos, Director del Departamento de Ingeniería Química (2016-2018), Vicerrector de Investigación, Desarrollo e Innovación (2018-2020) y Vicerrector Académico (2020-2022) de la Universidad de Santiago. Además, ha sido director del grupo de Estudio de Ingeniería 3 de Fondecyt ANID, y evaluador de proyectos y becas nacionales e internacionales.
Dicta docencia para las carreras de Ingeniería Química e Ingeniería en Biotecnología, así como en programas de postgrado de la Facultad de Ingeniería y de la Facultad Tecnológica, sobre ámbitos de Fisicoquímica, Termodinámica y Procesos de Separación. Desarrolla investigación en el área de procesos y materiales de membrana, así como de solventes alternativos (fluidos supercríticos, líquidos iónicos y solventes eutécticos profundos) en aplicaciones diversas: Industria de alimentos, procesos mineros, producción de biocombustibles, tratamiento de aguas, desarrollo de precursores químicos, modificación y funcionalización de polímeros para envases de alimentos y otros usos. Ha publicado un centenar de artículos en revistas indexadas de corriente principal (h- index: 28, con cerca de 2300 citaciones) y es autor de un libro, dos capítulos de libros y una patente. En cuanto a la formación de capital humano, ha dirigido 9 tesis doctorales, 15 proyectos de master, 5 estadías postdoctorales y ha guiado más de 50 trabajos de titulación de pregrado.
Pregrado: Fisicoquímica I y II, Termodinámica de Ingeniería Química, Termodinámica de Ingeniería de Procesos, Análisis de Bioprocesos Procesos de Separación por Membrana.
Postgrado: Termodinámica Avanzada, Tópicos de Separación por Membranas, Tecnologías Avanzadas en el Procesamiento de Alimentos, Fundamentos y Aplicaciones de los Fluidos Supercríticos, Propiedades Físicas de los Alimentos.
- Araya-López, C., Carrera, P., et al. (2022) ‘Analysis of microwave-assisted heating and water extraction from imidazolium and phosphonium based ionic liquids’, Thermochimica Acta, 714, p. 179262.
- Araya-López, C., Contreras, J., et al. (2022) ‘[Tf2N]-based ionic liquids for the selective liquid-liquid extraction of Levulinic acid/Formic acid: COSMO-RS screening and ternary LLE experimental data’, Fluid Phase Equilibria, p. 113518.
- Araya-López, C., Conejeros, J., et al. (2022) ‘Triazolium-based Ionic Liquids Supported on Alumina as Catalysts to Produce 5-HMF from Fructose’, ChemCatChem [Preprint].
- Cabezas, R. et al. (2022) ‘Analysis of Microwave-Assisted Heating and Water Extraction from Imidazolium and Phosphonium Based Ionic Liquids’, Available at SSRN 4052757 [Preprint].
- Merlet, G. et al. (2022) ‘Design of a perstraction-based extraction system for the removal of polychlorinated biphenyls from bovine milk via COSMO-RS: Membrane screening’, Separation and Purification Technology, 290, p. 120879.
- Olea, F. et al. (2022) ‘Ionic Liquids for the Selective Solvent Extraction of Lithium from Aqueous Solutions: A Theoretical Selection Using COSMO-RS’, Minerals, 12(2), p. 190.
- Quijada‐Maldonado, E. et al. (2022) ‘Rhenium (VII) extraction from sulfuric aqueous solutions using ionic liquids as diluent and extractant: insights on the extraction stoichiometry and process parameters’, Journal of Chemical Technology & Biotechnology, 97(5), pp. 1224–1233.
- Quilaqueo, M. et al. (2022) ‘Water recovery assessment from hypersaline lithium-rich brines using Membrane Distillation-Crystallization’, Desalination, 537, p. 115887.
- Quilaqueo, M. et al. (2022) ‘Water recovery assessment from hypersaline lithium-rich brines using Membrane Distillation-Crystallization’, Desalination, 537, p. 115887.
- Rozas, R. et al. (2022) ‘Solvent effects on the molecular structure of isolated lignins of Eucalyptus nitens wood and oxidative depolymerization to phenolic chemicals’, Polymer Degradation and Stability, 201, p. 109973.
- Villarroel, E., Olea, F., Araya-López, C., Merlet, G., et al. (2022) ‘COSMO RS evaluation as a tool for prediction of solvents in dispersive liquid-phase microextraction: Evaluation of conventional solvents and ionic liquids as extractants’, Journal of Molecular Liquids, 354, p. 118861.
- Villarroel, E., Olea, F., Araya-López, C., Gajardo, J., et al. (2022) ‘Diluent effects in the solvent extraction of rhenium (VII) with amine extractants in [Tf2N]-based ionic liquids: Experimental and COSMO-RS analysis’, Journal of Molecular Liquids, 346, p. 117091.
- Villarroel, E., Merlet, G., et al. (2022) ‘Ionic liquid screening of Octachlorodibenzo-p-dioxin captured from water samples by σ-profile analysis for microextraction applications’, Journal of Ionic Liquids, 2(1), p. 100017.
- Zurob, E. et al. (2022) ‘Succinic acid recovery from a glycerol-based solution using phosphonium ionic liquids supported by COSMO-RS’, Fluid Phase Equilibria, 559, p. 113471.
- Alvarado, N. et al. (2021) ‘Cassava starch: structural modification for development of a bio-adsorber for aqueous pollutants. Characterization and adsorption studies on methylene blue’, Polymer Bulletin, 78(2), pp. 1087–1107.
- Cabezas, R. et al. (2021) ‘Development of silicone-coated hydrophobic deep eutectic solvent-based membranes for pervaporation of biobutanol’, Journal of Membrane Science, 637, p. 119617.
- Cerda, A. et al. (2021) ‘Recovering water from lithium-rich brines by a fractionation process based on membrane distillation-crystallization’, Journal of Water Process Engineering, 41, p. 102063.
- Cerro, D. et al. (2021) ‘Effect of supercritical incorporation of cinnamaldehyde on physical-chemical properties, disintegration and toxicity studies of PLA/lignin nanocomposites’, International Journal of Biological Macromolecules, 167, pp. 255–266.
- Olea, F et al. (2021) ‘Separation of vanillin by perstraction using hydrophobic ionic liquids as extractant phase: Analysis of mass transfer and screening of ILs via COSMO-RS’, Separation and Purification Technology, 274, p. 119008.
- Olea, Felipe et al. (2021) ‘Theoretical prediction of selectivity in solvent extraction of La (III) and Ce (III) from aqueous solutions using β-diketones as extractants and kerosene and two imidazolium-based ionic liquids as diluents via quantum chemistry and COSMO-RS calculations’, Journal of Molecular Liquids, 325, p. 114655.
- Quijada-Maldonado, E. and Romero, J. (2021) ‘Solvent extraction of rare earth elements with ionic liquids: Toward a selective and sustainable extraction of these valuable elements’, Current Opinion in Green and Sustainable Chemistry, 27, p. 100428.
- Villegas, C. et al. (2021) ‘Obtaining active polylactide (Pla) and polyhydroxybutyrate (phb) blends based bionanocomposites modified with graphene oxide and supercritical carbon dioxide (scco2)-assisted cinnamaldehyde: Effect on thermal-mechanical, disintegration and mass transport properties’, Polymers, 13(22), p. 3968.
- Cabezas, R. et al. (2020) ‘Extraction of vanillin from aqueous matrices by membrane-based supercritical fluid extraction: Effect of operational conditions on its performance’, Industrial & Engineering Chemistry Research, 59(31), pp. 14064–14074.
- Estay, H. et al. (2020) ‘Optimizing the SART process: A critical assessment of its design criteria’, Minerals Engineering, 146, p. 106116.
- Ormazabal, S. et al. (2020) ‘Supercritical carbon dioxide solubility in hydrophobic ionic liquid mixtures: Experimental determination and thermodynamic modeling’, Fluid Phase Equilibria, 517, p. 112616.
- Plaza, A et al. (2020) ‘Dehydrated cranberry juice powder obtained by osmotic distillation combined with freeze-drying: Process intensification and energy reduction’, Chemical Engineering Research and Design, 160, pp. 233–239.
- Plaza, Andrea et al. (2020) ‘Obtaining hydroxytyrosol from olive mill waste using deep eutectic solvents and then supercritical CO2’, Waste and Biomass Valorization, 11(11), pp. 6273–6284.
- Quijada-Maldonado, Esteban et al. (2020) ‘Possibilities and challenges for ionic liquids in hydrometallurgy’, Separation and Purification Technology, 251, p. 117289.
- Quijada-Maldonado, E et al. (2020) ‘Selective liquid-liquid extraction of molybdenum (VI) and rhenium (VII) from a synthetic pregnant leach solution: Comparison between extractants and diluents’, Minerals Engineering, 145, p. 106060.
- Sepulveda, J. et al. (2020) ‘Effect of functionalized silica nanoparticles on the mass transfer process in active PLA nanocomposite films obtained by supercritical impregnation for sustainable food packaging’, The Journal of Supercritical Fluids, 161, p. 104844.
- Zurob, E. et al. (2020) ‘Design of natural deep eutectic solvents for the ultrasound-assisted extraction of hydroxytyrosol from olive leaves supported by COSMO-RS’, Separation and Purification Technology, 248, p. 117054.
- Quintriqueo, A. et al. (2020) ‘Extraction and separation factor for lanthanum (III) and cerium (III) complexes from aqueous medium using ionic liquid and kerosene’, Advances in Chemical Engineering and Science, 10(04), p. 343.
- Cabezas, R. et al. (2019) ‘Performance of butanol separation from ABE mixtures by pervaporation using silicone-coated ionic liquid gel membranes’, RSC advances, 9(15), pp. 8546–8556.
- Çalhan, A. et al. (2019) ‘Development of metal organic framework filled PDMS/PI composite membranes for biobutanol recovery’, Korean Journal of Chemical Engineering, 36(9), pp. 1489–1498.
- Canales, J.P. et al. (2019) ‘Extraction of sulfite for wastewater treatment and for analytical determination.’, Desalination and Water Treatment, 146, pp. 341–350.
- Gim-Krumm, M. et al. (2019) ‘Impact of precipitate characteristics and precipitation conditions on the settling performance of a sulfide precipitation process: An exhaustive characterization of the aggregation behavior’, Hydrometallurgy, 189, p. 105150.
- Rojas, A. et al. (2019) ‘Supercritical impregnation for food applications: a review of the effect of the operational variables on the active compound loading’, Critical Reviews in Food Science and Nutrition, 60(8), pp. 1290–1301.
- Villegas, C. et al. (2019) ‘PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging’, Composites Part B: Engineering, 176, p.
107336. - Romero, J. et al. (2018) ‘Membrane Technology for Catalytic Processes in Ionic Liquids’, in Sustainable Catalysis in Ionic Liquids. CRC Press, pp. 265–290.
- Alvarado, N. et al. (2018) ‘Supercritical impregnation of thymol in poly (lactic acid) filled with electrospun poly (vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material’, Journal of Food Engineering, 217, pp. 1–10.
- Estay, H. et al. (2018a) ‘Assessment of industrial modules to design a GFMA process for cyanide recovery based on a phenomenological model’, Processes, 6(4), p. 34.
- Estay, H. et al. (2018b) ‘Performance evaluation of mass transfer correlations in the GFMA process: A review with perspectives to the design’, Journal of Membrane Science, 554, pp. 140–155.
- López de Dicastillo, C. et al. (2018) ‘Modifying an active compound’s release kinetic using a supercritical impregnation process to incorporate an active agent into PLA electrospun mats’, Polymers, 10(5), p. 479.
- Quijada-Maldonado, E. et al. (2018) ‘Task-specific ionic liquids as extractants for the solvent extraction of molybdenum (VI) from aqueous solution using different commercial ionic liquids as diluents’, Industrial & Engineering Chemistry Research, 57(5), pp. 1621–1629.
- Rojas, A. et al. (2018) ‘Effect of pressure and time on scCO2-assisted incorporation of thymol into LDPE-based nanocomposites for active food packaging’, Journal of CO2 Utilization, 26, pp. 434–444.
- Torres-Ossandón, M.J. et al. (2018) ‘Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.)’, The Journal of Supercritical Fluids, 138, pp. 215–220.
- Yáñez-S, M. et al. (2018) ‘Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: synthesis and physicochemical characterization’, Cellulose, 25(5), pp. 2901–2914.
- López de Dicastillo, C. et al. (2017) ‘Improvement of polylactide properties through cellulose nanocrystals embedded in poly (vinyl alcohol) electrospun nanofibers’, Nanomaterials, 7(5), p. 106.
- Merlet, G. et al. (2017) ‘Separation of fermentation products from ABE mixtures by perstraction using hydrophobic ionic liquids as extractants’, Journal of Membrane Science, 537, pp. 337–343.
- Muhammada, A. et al. (2017) ‘Numerical modelling and simulation of membrane-based extraction of copper (II) using hollow fiber contactors’, Desalination and Water Treatment, 63, pp. 113–123.
- Quijada-Maldonado, E., Torres, M.J. and Romero, J. (2017) ‘Solvent extraction of molybdenum (VI) from aqueous solution using ionic liquids as diluents’, Separation and Purification Technology, 177, pp. 200–206.
- Rojas, A. et al. (2017) ‘Assessment of kinetic release of thymol from LDPE nanocomposites obtained by supercritical impregnation: Effect of depressurization rate and nanoclay content’, European Polymer Journal, 93, pp. 294–306.
- Sepúlveda, R. et al. (2017) ‘Improvement of recovery performance in the solvent extraction of Cu (II) using [bmim][Tf2N] and a β-diketone as extractant and its stripping with supercritical carbon dioxide’, The Journal of Supercritical Fluids, 128, pp. 26–31.
- Silva, W. et al. (2017) ‘RED WINE EXTRACT OBTAINED BY MEMBRANE BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.’, Brazilian Journal of Chemical Engineering, 34, pp. 567–581.
- Torres, A. et al. (2017) ‘Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation’, European Polymer Journal, 89, pp. 195–210.
- Villegas, C. et al. (2017) ‘Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials’, Food Research International, 99, pp. 650–659.
2020-2022 Proyecto FONDEF ID17I20021 – “Proceso Integrado de Separación con Membranas para la Recuperación de Cianuro y Metales de Valor en la Minería de Oro y Plata”, Investigador Responsable: Humberto Estay (AMTC, Universidad de Chile), Coinvestigador.
2019-2022 Proyecto FONDECYT Regular nº1190302 – “Production of HMF in an ionic liquid/organic biphasic system coupling dense CO2 as phase separation switch and a hollow fiber membrane” – Investigador Responsable.
2017-2019 Proyecto BMBF Alemania – “Sustainable functionalization of packaging films by supercritical CO 2 (ImpregPack)”, Fraunhofer Institute/Universidad de Santiago de Chile. Investigadores resposnables: Carolin Hauser, María José Galotto, Coinvestigador.
2016-2018 Proyecto Fondef ID15I10611 – “Concentración de extractos fenólicos y purificación de hidroxitirosol a partir de RILes de la industria olivícola utilizando perstracción”. Investigador Responsable: Dr. Carlos Zambra, Investigador Principal.
2015-2017 Nucleo Milenio “Centro Interdisciplinario de Líquidos Iónicos” (Renovación) – Instituciones albergantes: Univ. de Chile y Pontificia Univ. Católica de Chile, Inv. Resp.: Renato Contreras, Investigador Principal.
2015-2017 Programa de Inserción de Capital Humano Avanzado en la Academia, Proyecto nº 79140047 – “Fortalecimiento del área de procesos de separación avanzada y solventes alternativos del Departamento de Ingeniería Química”, Investigador Inserto: Dr. Esteban Quijada – Investigador Patrocinador.
2014-2018 Proyecto FONDECYT Regular nº1140208 – “Development of asymmetric ionic liquid-based membranes for pervaporation of biobutanol” – Investigador Responsable.
2012-2014 Proyecto FONDECYT de Postdoctorado nº 3130594 – “Sistema integrado de absorción de membrana-electrodo modificado con copolímeros de Porfirina de Co y Anilina y/o sus derivados para la determinación de sulfito en vino” – Investigador Responsable: Dra. Roxana Arce, Patrocinante: Dr. Julio Romero.
2011-2013 Proyecto ECOS-CONICYT C10E05 – “Development of new supported ionic liquid membranes and its application in supercritical fluid extraction of organic compounds from aqueous solutions” – Proyecto de cooperación internacional con el Institut Européen des Membranes de Montpellier (Francia) – Investigador Responsable.
2010-2012 Proyecto FONDECYT Regular nº 1100305 – “Supercritical fluid extraction of organic compounds from aqueous solutions using gelled ionic liquid membranes” – Investigador Responsable.

Títulos y/o Grados
- Doctor en Ingeniería de Procesos, Universidad de Montpellier.
- Licenciado en Ciencias de la Ingeniería, Universidad de Santiago de Chile.
- Ingeniero Civil Químico, Universidad de Santiago de Chile.
Líneas de Investigación
- Membrane processes and materials
- Supercritical fluids
- Ionic liquids and deep eutectic solvents
- Polymer modification and functionalization